

CENSUS OF THE COMMONWEALTH OF AUSTRALIA.

30th June, 1954.

AUSTRALIAN LIFE TABLES, 1953-1955.

Prepared by

S. W. CAFFIN, F.I.A., F.S.S., A.S.A., A.A.I.I., COMMONWEALTH ACTUARY.

Published under instructions from
THE RIGHT HONORABLE THE TREASURER,
By
S. R. CARVER,

COMMONWEALTH STATISTICIAN.
A. J. Arthur, Commonwealth Government Printer, Canberra.

CONTENTS.

REPORT ON THE AUSTRALIAN LIFE TABLES, 1953-1955 BY THE COMMONWEALTH ACTUARY.

In accordance with a request by the Commonwealth Statistician I have prepared male and female Life Tables based on the results of the 1954 Census of the Commonwealth.
2. Previous national Life Tables have been as follows:-

No.		Period over which Deaths were Tabulated.	Censuses Included.		
1	\cdots				
2	\cdots		1881 to 1890	1881 and 1891	
3	\cdots	\cdots	\cdots	1891 to 1900	1891 and 1901
4	\cdots	\cdots	\cdots	1901 to 1910	1901 and 1911
5	\cdots	\cdots	\cdots	1920 to 1922	1921
6	\cdots	\cdots	\cdots	1946 to 1934	1933

The Tables now put forward are the seventh in the series and are entitled Australian Life Tables, 1953-1955.
It will be observed that whilst the first three Tables shown in the above summary take into account deaths over a ten-year period, i.e., the period between two censuses, the last three Tables have been based on a period of three years about a census. The reasons for this departure from earlier practice have been-
(a) the lengthy intervals between the 1921, 1933 and 1947 Censuses,
(b) the population disturbances resulting from two world wars, and
(c) the considerable fluctuations in birth rates and migration over the past fifty years.

In these circumstances the practice has been to limit the investigation to the years in close proximity to the census date, as one means of facilitating a satisfactory estimate of the population exposed to risk. In addition, by this means a more recent mortality experience is obtained, as the date to which the experience applies is, on the average, the date of the last census, rather than a date approximately halfway between that and the previous census.
3. For the present Tables, the reasons outlined in the previous paragraph are particularly relevant and it was, therefore, decided to follow recent practice and to base the Tables on the results of the Census of 30th June, 1954, and the deaths in the three years 1953, 1954 and 1955.

DATA.

4. The data required for the calculations was supplied by the Commonwealth Statistician. The principal statistics employed are shown in Appendix D, viz.:-
(a) the number of males and females living at each age last birthday, as shown by the 1954 Census;
(b) the number of male and female deaths at each age last birthday in the years 1953, 1954 and 1955;
(c) the numbers of births during the years 1947 to 1955 ; and
(d) an analysis of the number of deaths under six years of age during the years 1948 to 1955.

In addition, summaries by age last birthday of the movement of population to and from Australia during 1953 to 1955 were supplied.
5. A summary of the population, and a comparison with the corresponding figures for earlier years, is as follows:-

Population.

Year.				Males.	Females.	Total.
1901	\cdots	\cdots	\cdots	1,977,928	1,795,873	3,773,801
1921	.	.	\cdots	2,762,870	2,672,864	5,435,734
1933		.	\cdots	3,367,111	3,262,728	6,629,839
1947	.	\cdots	\cdots	3,797,370	3,781,988	7,579,358
1954		..	.	4,546,118	4,440,412	8,986,530

At the 1954 Census, 20,735 males and 19,664 females failed to state their ages. These numbers are less than the corresponding numbers for the 1947 Census and were allocated to individual ages by the Commonwealth Statistician by a random process following an examination of the available information.

During the three years under consideration there were 136,797 male and 107,232 female deaths. Ages were not stated for only 49 male and 21 female deaths and these deaths were allocated to different ages by a proportionate method.

Migration.

6. When mortality rates are derived from the deaths in the three years about the date of a census, it is normally assumed that three times the number returned as living at a particular age at the census date provides a reasonable approximation to the total number of persons exposed to risk of death at that age during the three years.

On this occasion an examination of the data suggested that it would be advisable to adjust the numbers found in this manner for migration during 1953 to 1955, in order to obtain a better estimate of the numbers subject to the risk of death during those years. The net movement into Australia during 1953 to 1955 was-

Net Movement into Australia (all Ages).

-			Males.	Females.
1953-First six months			6,590	5,772
Second six months			13,511	17,024
1954-First six months			13,270	9,245
Second six months			24,258	21,434
1955-First six months			28,026	17,755
Second six months	\cdots	.	28,632	22,842
Total	114,287	94,072

Adjustments were necessary in respect of-
(a) departures prior to the census who were subject to the risk of death from the beginning of 1953 to the date of their departure ;
(b) arrivals after the census who were subject to the risk of death from the date of their arrival to the end of 1955; and
(c) arrivals prior to the census, and departures after the census, who would otherwise be assumed to be at risk for the whole of the three years.
The adjustments necessary to correct for these under and over-statements were made at each age as follows:-

For Net Movement into Australia during-	Deduct.	Add.
1953-First six months	4 of net movement	.
1954 Second six months	$\frac{3}{4}$ of net movement	\cdots
1954-First six months	14 of nel movement	
1955 Second six months		1\$ of net movement
1955-First six months	\cdots	$\frac{3}{4}$ of net movement
Second six months	\cdots	\ddagger of net movement

Calculation of Mortality Rates.

7. The Methods Used.-The Life Tables prepared following the 1933 and 1947 Censuses were constructed by the method put forward by the late George King, F.I.A., in 1908. This method has been widely used in the United Kingdom and other countries. The main advantage of the method is that by grouping both the population and the deaths in quinquennial age groups to obtain quinary rates of mortality, the effects of age mis-statements and other errors which are encountered at a census, or in registrations of deaths, are minimized and reliable mortality rates are obtained. In addition, the mathematical calculations involved are simple and easily explained. Once the quinary mortality rates have been obtained the method consists of completing the intervening values by a mathematical formula which ensures their regular progression from age to age.

My examination of the present data shows that the age mis-statements which have occurred in the population at most ages have been of relatively small importance. Further, it appears that broadly similar mis-statements have occurred in the ages given for some deaths, because the unadjusted mortality rates, found by dividing the deaths at age x last birthday in the three years by the population exposed to risk of death at that age, flow in general with surprising regularity from age to age. To illustrate this feature, the unadjusted mortality rates for ages 15 to 80 are shown graphically in Appendices E and F. Investigations have shown that the corresponding rates derived from the 1947 Census data also exhibit a considerable degree of regularity at most ages.
8. Apart from the feature mentioned in the previous paragraph, there are certain technical reasons to doubt the wisdom of using King's method for calculation of mortality rates if alternative methods are available. The main reasons are-
(a) the practical difficulty, with King's method, of determining which age grouping should be used in calculating the quinary mortality rates;
(b) in arriving at the quinary mortality rates, the method involves some graduation of the population and the deaths. In view of the expectation nowadays that the numbers at successive ages may fluctuate quite substantially because of the effect of war deaths, birth rates and migration, it is doubtful whether such separate graduations can be justified; and
(c) the quinary mortality rates are assumed to apply to the central age of each quinquennial age group. This assumption is reasonable if the run of numbers from age to age is fairly smooth. In fact, the present age distribution is not smooth.
I have, therefore, not used King's method for the present Tables but have proceeded as described in the following paragraphs.
9. Ages 0-5.-The formulae adopted for the calculation of the mortality rates for these ages are detailed in Appendix G and are based on the formulae set out in Appendix D of the Report on the Australian Life Tables, 1946-1948.

It will be noted that the formula used for the calculation of $q_{0}{ }^{(0-3}$ months) differs slightly from the formula previously used, it being considered that the use of the fractions $\frac{1}{8}$ and $\frac{7}{8}$ in the denominator would result in a more accurate exposed to risk on this occasion.

The mortality rates obtained by these methods contained no adjustment to offset the effects of migration of young children and it was necessary to amend the exposed to risk at each age 0 to 5 for this purpose. The effect of this adjustment was small.
10. Ages 6 to 106-Graduation Formula.-For these ages, it was decided to calculate from the data the unadjusted mortality rates and to graduate those rates by a graduation formula which would produce a series of mortality rates of satisfactory smoothness and adherence to the original data.

After an investigation of a number of different methods of graduation I decided to adopt a summation method of graduation, embodying a combination of summations of varying range of the function to be graduated. The method is particularly suitable for this investigation as there is a number of summation formulae available and, as a result, it is possible to select the formula which will give the desired smoothness in the graduated values whilst not departing unnecessarily from trends shown by the data. The summation formula finally adopted was that put forward by the late John Spencer, F.I.A., and employed by him in 1903 in the graduation of the Manchester Unity Independent Order of Oddfellows Mortality Experience 1893-1897, and by the Institute of Actuaries, London, for the purposes of the Assured Lives Mortality Table 1924-1929 (Ultimate Rates). The formula may be expressed in the following form:-

$$
u_{x}^{\prime}=\frac{[5]^{2}[7]}{350}\{[1]+[3]+[5]-[7]\} u_{x}
$$

where $u_{x}^{\prime}=$ the graduated value,

$$
u_{x}=\text { the ungraduated value, and }
$$

[5] $u_{x}=\left(u_{x-2}+u_{x \rightarrow 1}+u_{x}+u_{x+1}+u_{x+2}\right)$, \&c.
11. Ages 6 to 106-Application of Formula.-A study of the unadjusted mortality rates for ages over 85 years indicated that it would be unwise to place too much reliance on the accuracy of these rates. Some doubts were felt as to the accuracy at these ages of the general method for determining the exposed to risk and the possibility of age mis-statements amongst the relatively small population was a factor which could not be ignored. The unadjusted mortality rates from age 86 onwards were, therefore, replaced by a series of values obtained from a mathematical formula which satisfactorily represented, in my opinion, the proper trend of mortality at those advanced ages. The functions used were-

$$
\begin{array}{lll}
\text { Males } & . . & m_{x}=.20991(1.08156)^{x-86} \\
\text { Females } & \ldots & m_{x}=.22445(1.07416)^{x-86}-.04772 .
\end{array}
$$

Graduated values of the mortality rates were obtained by means of the graduation formula in paragraph 10 for ages 11 to 90 , at which age the graduated rates merged with the values found by the above formulae.

The remaining values to be determined, i.e., for ages 6 to 10 , were obtained from an examination of the unadjusted data,

Examination of the Graduation.

12. The graduated mortality rates have been tested for adherence to the original facts. The number of deaths expected at each age according to the graduated mortality rates have been calculated and compared with the number of deaths which actually occurred. The comparison is summarized for quinquennial age groups in the following table:-

Comparison of Actual and Expected Deaths.

				Mal						Fema			
Age Group.				Devia		Accum	ion.			Devta		Accum	
				+	-	$+$	-			$+$	-	$+$	-
6-10	..	842	842	\cdots		\cdots		561	560	1	.	1	..
11-15	..	743	781	\cdots	38	\ldots	38	395	395	\cdots		1	.
16-20	.	1,473	1,435	38		.	\because	511	496	$\cdots 15$		16	.
21-25	\ldots	1,746	1,758		\cdots	..	12	628	625	3		19	.
26-30	.	1,885	1,882	3	..		9	872	883		11	8	\cdots
31-35	\cdots	1,999	1,985	14		5		1,223	1,213	10		18	\cdots
36-40	\cdots	2,529	2,565		36		31	1,780	1,803	..	23		5
41-45	..	3,760	3,732	28	. .		3	2,524	2,507	17		12	..
46-50	\cdots	5,588	5,575	13		10		3,434	3,424	10		22	\ldots
51-55	.	7,922	8,016		94		84	4,579	4,564	15		37	
56-60	\cdots	10,986	10,949	37	..		47	6,367	6,475		108		71
61-65	.	15,535	15,408	127		80		9,443	9,353	90		19	
66-70	\cdots	17,812	18,050		238		158	12,033	12,162		129		110
71-75	.	18,341	18,167	174		16		14,960	14,399	161		51	
76-80	.	15,434	15,471		37		21	15,214	15,326		112		61
81-85	.	11,568	11,538	30		9		13,615	13,558	57		\cdots	4
86-90	\cdots	6,396	6,237	159		168		8,278	8,283		5	\cdots	9
91-95	\ldots	1,830	1,981	..	151	17		2,993	2,980	13		4	
96 and over	.	289	361	.	72	..	55	563	624	.	61	.	57
		126,678	126,733	623	678	.	55	99,573	99,630	392	449	.	57

An examination of the actual and expected deaths shows that the deviations are small and change sign frequently. As a result of this test and other tests which were made it has been concluded that the graduated rates satisfactorily represent the mortality experience of the Australian population during the years 1953 to 1955.

The Life Tables.

13. In Appendices A and B I have tabulated the Life Tables for male and temale lives, showing the following functions:-
$l_{x}=$ the number of persons surviving at exact age x;
$d_{x}=$ the number of deaths in the year of age x to $x+1$ among the l_{x} persons who enter on that year;
$p_{x}=$ the probability of a person aged x living a year;
$q_{x}=$ the probability of a person aged x dying within a year;
$\mu_{x}=$ the nominal annual rate of mortality based on the assumption that the intensity of mortality during the moment following the attainment of age x continues throughout the year of age x to $x+1$;
$\dot{e}_{3}=$ the complete expectation of life or the average number of years lived after age x by each of a group of persons aged exactly x.
The formulae adopted for the calculation of the various functions were as follows:-

$$
\begin{aligned}
q_{x} & =\frac{m_{x}\left(1-\frac{1}{12} \frac{q_{x-1}}{p_{x-1}}\right)}{1+\frac{5}{12} m_{x}} \\
\mu_{x} & =\frac{1}{12 l_{x}}\left[7\left(d_{x-1}+d_{x}\right)-\left(d_{x-2}+d_{x+1}\right)\right] \\
\stackrel{\circ}{e}_{x} & =\frac{1}{l_{x}} \sum_{t=1}^{\infty} l_{x+t}+\frac{1}{2}-\frac{1}{12} \mu_{x}
\end{aligned}
$$

Main Features of the Mortality Rates.

14. To facilitate an examination of the new mortality rates I have prepared comparisons with earlier Australian mortality rates and with the latest experience in the United Kingdom and New Zealand. These comparisons are contained in Appendix C and consist of tables showing-
(a) the rate of mortality $\left(q_{x}\right)$ at representative ages;
(b) the rates of mortality for different periods;
(c) the number of survivors $\left(l_{x}\right)$ at representative ages; and
(d) the complete expectation of life $\left({ }_{(}{ }_{x}\right)$ at representative ages.
15. Male Mortality.-With the exception of ages 16 to 26 inclusive, and 69 to 73 inclusive, the 1953-55 mortality rates are less than those for 1946-48. The most significant reduction has occurred at age 0 , where the mortality rate is 79 per cent. of the corresponding rate for 1946-48, and only 27 per cent. of the experience for the period 1901-1910.

The most disturbing feature of the current experience has been the increase in mortality which has occurred in the $16-26$ age group. The mortality rates for the relevant quinquennial age groups for both males and females are shown in the following table. It will be seen that the increase in the male rates is the result of heavier mortality from accidents of all types, which has more than counterbalanced a decrease in the rates of mortality due to other causes.

Comparative Mortality Rates.								
Age Group.			1946-48,			1953-55.		
			Accident.	Other than Accident.	All Causes.	Accident.	Other than Accident.	All Causes.
			(1)	(2)	(3)	(4)	(5)	(6)
Males.								
15-19	.	\cdots	. 00071	. 00070	. 00141	. 00099	. 00052	. 00151
20-24	\cdots	.	. 00090	. 00082	. 00172	. 00115	. 00067	. 00182
25-29	.	.	. 00067	. 00103	. 00170	. 00089	. 00078	. 00167
30-34 00057	. 00145	. 00202	. 00071	. 00109	. 00180
35-39	..	\cdots	. 00059	. 00206	. 00265	. 00064	. 00174	. 00238
40-44 00062	. 00350	. 00412	. 00068	. 00297	. 00365
Females.								
15-19	.	.	. 00012	. 00057	. 00069	. 00015	. 00043	. 00058
20-24 00012	. 00096	. 00108	. 00013	. 00054	. 00067
25-29	.	.	. 00008	. 00142	. 00150	. 00010	. 00072	. 00082
30-34		.	. 00008	. 00170	. 00178	. 00008	. 00103	. 00111
35-39	\ldots	.	. 00010	. 00229	. 00239	. 00011	. 00162	. 00173
40-44		.	. 00012	. 00317	. 00329	. 00012	. 00242	. 00254

16. At advanced ages, the experience suggests that only a slight improvement in male mortality has occurred since 1946-48.

As yet, knowledge of the true mortality rates of old age is limited because of apparent defective data. This handicap can only be overcome by detailed research into ages of population and deaths after age 90 , and it might be advantageous to consider using, at future investigations, sampling techniques to establish the accuracy of these tabulations.
17. Female Mortality.-The comparative tables in Appendix C show that very substantial decreases in female mortality rates have occurred over the whole range of ages since the 1946-48 experience. This improvement has been considerably greater overall than that for males.

Accident mortality amongst females has never been as significant as amongst males. From the table in paragraph 15 it is apparent that the female accident mortality rate has increased very slightly but this increase has been more than offset by the reduction in the mortality rate from other causes. The disparity, in this table, between the high male accident rate and the low female accident rate is notable.

In the 1946-48 experience, female mortality from causes other than accidents was, in the age range 20 to 39 years, heavier than the corresponding male mortality. On this occasion, however, the position has been reversed.

Difficulties in the calculation of mortality rates at high ages amongst females are the same as those discussed in the previous paragraph for males. It is clear, however, that the female mortality rates at these ages have shown substantially greater improvement since $1946-48$ than the male rates.
S. W. CAFFIN,

Commonwealth Actuary.
21st April, 1958.

APPENDIX A.

APPENDIX B.

APPENDIX C

COMPARATIVE TABLES.

1. Rates of Mortality (q_{x}) at Representative Ages.

		Age. (x)			1901-10.	1920-22.	1932-34.	1946-48.	1953-55.
					(1)	(2)	(3)	(4)	(5)
Males.									
0	..	\cdots 09510	. 07132	. 04543	. 03199	. 02521
10	..	\cdots 00179	. 00156	. 00119	. 00072	. 00056
20 00370	. 00284	. 00219	. 00169	. 00186
30 00519	. 00390	. 00271	. 00186	. 00170
40 00816	. 00617	. 00460	. 00337	. 00297
50 01395	. 01158	. 00966	. 00919	. 00819
60 02584	. 02407	. 02216	. 02278	. 02221
70 06162	. 05290	. 05082	. 05256	. 05315
80	.	\cdots	.	.	. 13795	. 13340	. 12659	. 12011	. 11958
Females.									
0 07953	. 05568	. 03642	. 02519	. 01989
10	.	.	-•	.	. 00159	. 00127	. 00087	. 00050	. 00035
20 00329	. 00252	. 00183	. 00091	. 00064
30 00519	. 00387	. 00279	. 00165	. 00096
40	..	.	-	..	. 00718	. 00524	. 00402	. 00284	. 00217
50	..	.	\cdots	.	. 00956	. 00808	. 00744	. 00641	. 00530
60	\cdots	.	.	\cdots	. 01920	. 01571	. 01466	. 01360	. 01203
70	..	\cdots	.	\cdots	. 04777	. 04090	. 03802	. 03607	. 03250
80 11333	. 11230	. 10106	. 10027	. 09314

2. Rates of Mortality for One Period as a Proportion of the Rates for the Preceding Period.

	Age.		Males.				Females.			
			$\frac{1920-22}{1901-10}$	$\frac{\text { 1932-34 }}{1920-22 .}$	$\frac{1946-48}{1932-34 .}$	$\frac{1953-55}{1946-48 .}$	$\frac{1920-22}{1901-10 .}$	$\frac{1932-34}{1920-22 .}$	$\frac{1946-48}{1932-34 .}$	$\frac{1953-35}{1946-48 .}$
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
0	-•	\cdots	. 75	. 64	. 70	. 79	. 70	. 65	. 69	. 79
10	.	.	. 87	. 76	. 61	. 78	. 80	. 69	. 57	. 70
20 77	. 77	. 77	1.10	. 77	. 73	. 50	. 70
30	.	.	. 75	. 69	. 69	. 91	. 75	. 72	. 59	. 58
40	.	.	. 76	. 75	. 73	. 88	. 73	. 77	. 71	. 76
50	.	. \cdot	. 83	. 83	. 95	. 89	. 85	. 92	. 86	. 83
60 93	. 92	1.03	. 97	. 82	. 93	. 93	. 88
70	.	.	. 86	. 96	1.03	1.01	. 86	. 93	. 95	. 90
80	.	\cdots	. 97	. 95	. 95	1.00	. 99	. 90	. 99	. 93

3. Rates of Mortality for Periods since 1901-10 as a Proportion of the Rates for the Period 1901-10.

	Age.		Males.				Females.			
			$\frac{1920-22}{1901-10}$	$\frac{1932-34}{1901-10 .}$	$\frac{1946-48}{1901-10 .}$	$\frac{1953-55}{1901-10 .}$	$\frac{1920-22}{1901-10}$.	$\frac{1932-34}{1901-10}$	$\frac{1946-48}{1901-10}$.	$\frac{1953-55}{1901-10 .}$
			(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
0 75	. 48	. 34	. 27	. 70	. 46	. 32	. 25
10	.	\cdots	. 87	. 66	. 40	. 31	. 80	. 55	. 31	. 22
20	.	.	. 77	. 59	. 46	. 50	. 77	. 56	. 28	. 19
30	.	\ldots	. 75	. 52	. 36	. 33	. 75	. 54	. 32	. 18
40 76	. 56	. 41	. 36	. 73	. 56	. 40	. 30
50 83	. 69	. 66	. 59	. 85	. 78	. 67	. 55
60	.	.	. 93	. 86	. 88	. 86	. 82	. 76	. 71	. 63
70 86	. 82	. 85	. 86	. 86	. 80	. 76	. 68
80 97	. 92	. 87	. 87	. 99	. 89	. 88	. 82

4. Number of Survivors (l_{x}) at Selected Ages out of 100,000 Births.

	Age.(x)		Males.				Females.			
			1920-22.	1932-34.	1946-48.	1953-55.	1920-22.	1932-34.	1946-48.	1953-55.
0	.	..	100,000	100,000	100,000	100,000	100,000	100,000	100,000	100,000
10	..	\cdots	89,389	93,193	95,619	96,488	91,314	94,424	96,549	97,228
20	.	..	87,697	91,797	94,562	95,460	89,906	93,341	95,953	96,774
30	..	-•	84,743	89,566	92,967	93,801	87,086	91,174	94,740	96,055
40.	.	.	80,813	86,539	90,823	91,861	83,279	88,175	92,758	94,715
50.	..	.	74,330	81,061	85,946	87,553	78,313	83,680	89,011	91,573
60		..	63,386	69,950	74,251	76,256	70,150	75,565	81,257	84,665
70	44,332	50,086	52,230	54,054	54,771	59,629	65,398	69,613
80		..	18,614	22,223	22,785	23,658	27,170	31,539	35,401	39,633
90		..	2,141	2,935	3,144	3,507	4,238	5,808	6,556	8,087

5. Complete Expectation of Life $\left(\stackrel{\circ}{e}_{x}\right)$ at Selected Ages.

6. Rates of Mortality (q_{x}) at Selected Ages from 1953-55 Experience compared with Recent Rates of Mortality for the United Kingdom and New Zealand.

7. Rates of Mortality from 1953-55 Australian Experience, as a Proportion of the Rates for the United Kingdom and New Zealand.

Age.				Males.		Females.	
				$\frac{\text { Australia 1953-55 }}{\text { United Kingdom 1950-52. }}$	$\frac{\text { Australia 1953-55 }}{\text { New Zealand 1950-52. }}$	$\frac{\text { Australia 1953-55 }}{\text { United Kingdom 1950-52. }}$	$\frac{\text { Australia 1953-55 }}{\text { New Zealand 1950-52. }}$
				(1)	(2)	(3)	(4)
0	.	\cdots	\cdots	. 77	1.01	. 79	1.00
10	-	-	\cdots	1.08	1.12	1.00	1.25
20	-	\ldots	-•	1.44	1.16	. 77	. 94
30	-	\cdots	\cdots	1.08	1.06	.76	. 87
40	\cdots	-•	-•	1.02	1.11	. 96	1.04
50	-	\cdots	\cdots	. 96	1.13	1.01	. 96
60	.	-	.	. 94	$1.14{ }^{\text {* }}$. 95	- " $91{ }^{\text {- }}$
70	\cdots	.	\cdots	. 94	1.13	. 92	. 99
80	-•	.	. \cdot	. 88	1.06	- . . 89	1.00

\qquad

APPENDIX D.
I. POPULATION AT CENSUS, 30Th JUNE, 1954 AND DEATHS IN THREE YEARS, 1953-1955—AUSTRALIA.

Males.

2. POPULATION AT CENSUS, 30th JUNE, 1954 AND DEATHS IN THREE YEARS, 1953-1955-AUSTRALIA.

Females.

3. BIRTHS REGISTERED IN AUSTRALIA DURING EACH QUARTER, 1947-1955.

Quarter of Year.	1947.	1948.	1949.	1950.	1951.	1952.	1953.	1954.	1955.
Males.									
First	25,005	22,462	22,430	24,374	24,686	25,799	26,326	25,453	26,235
Second	23,430	23,095	22,323	24,112	24,667	25,340	25,303	26,002	26,529
Third	23,059	22,726	24,180	24,709	25,445	25,992	25,886	25,912	27,387
Fourth	22,324	23,028	23,813	24,635	24,603	26,250	25,984	26,188	26,299
Total	93,818	91,311	92,746	97,830	99,401	103,381	103,499	103,555	106,450

Females.

First		23,511	21,185	21,206	23,104	23,326	24,605	25,143	24,256	25,083
Second		22,053	21,882	21,284	22,584	23,358	23,908	24,186	24,611	25,071
Third	-	21,985	21,629	23,225	23,724	24,236	24,904	24,631	24,860	26,327
Fourth	.	21,017	21,969	22,800	23,349	22,977	24,852	24,776	24,974	24,746
Total	..	88,566	86,665	88,515	92,761	93,897	98,269	98,736	98,701	101,227

4. DEATHS UNDER SIX YEARS OF AGE, REGISTERED IN AUSTRALIA, 1948-1955.

Females.

1948		\cdots	.	.		\cdots	2,086		\cdots	..
1949	\cdots	.	.	.		\cdots	1,963	220			.	.
1950	2,004	238	90		\ldots	.
1951	\cdots	.	.	.			2,129	261	150	88	\cdots	\cdots
1952	.	..					2,023	274	125	80	69	
1953	..	.	1,586	183	157	126	2,052	246	132	88	77	73
1954	\cdots	\ldots	1,530	185	128	95	1,938	241	117	71	59	49
1955	.	.	1,496	187	142	122	1,947	221	119	90	86	53

${ }^{3}$.NOTE: For mortality rates for ages 15 to 50 refer to left hand scale. For ages over 50 refer to right hand scale

Nore: For mortality rates for ages 15 to 50 refer to left hand scale. For ages over 50 refer to right hand scale,

APPENDIX G.

FORMULAE USED FOR CALCULATION OF MORTALITY RATES AT AGES 0 TO 5.

Age 0 .-If the rate of mortality at age 0 is q_{0} and the probability of dying in the first three months after birth is $q_{0}(0-3$ months),$q_{0}=q_{0}{ }^{(0-3 \text { months })}+q_{0}{ }^{(3-6}$ months $)+q_{0}{ }^{(6-9}$ months $)+q_{0}{ }^{(9-12}$ months $)$
The formula used for $q_{0}(0-3$ months) is,

$$
\begin{aligned}
& q_{0}(0-3 \text { months })=\frac{\text { Deaths in 1953, } 1954 \text { and } 1955 \text { at age } 0-3 \text { months }}{\frac{1}{8} \beta^{4}{ }_{1952}+\beta_{1953}+\beta_{1954}+\beta^{1}{ }_{1955}+\beta^{2}{ }_{1955}+\beta^{3} 1955+\frac{7}{8} \beta^{4} 1955 .} \\
& q_{0}(3 \sim 6 \text { months })=\frac{\text { Deaths in } 1953,1954 \text { and } 1955 \text { at age } 3-6 \text { months. }}{\frac{4}{2} \beta^{3}{ }_{1952}+\beta_{1952}^{4}+\beta_{1953}+\beta_{1954}+\beta_{1955}^{1}+\beta^{2}{ }_{1955}+\frac{1}{2} \beta^{3} 1955 .}
\end{aligned}
$$

In the above formula β_{1953} is the number of births in the year $1953, \beta^{1}{ }_{1955}$ is the number of births in the first quarter of 1955, \&c.

Ages 1-5.-

$$
\begin{aligned}
q_{1} & =\frac{\text { Deaths in 1953, } 1954 \text { and } 1955 \text { at age } 1}{\frac{1}{8} \beta^{1} 1951+\frac{2}{8} \beta^{2}{ }_{1951}+\frac{5}{8} \beta^{3}{ }_{1951}+\frac{7}{8} \beta^{4} 1951+\beta_{1952}+\beta_{1953}+\frac{7}{8} \beta^{1} 1954+\frac{8}{8} \beta^{2} 1954+\frac{2}{8} \beta_{1954}^{8}+\frac{2}{8} \beta_{1954}^{4}} \\
& - \text { (deaths at age } 0-1 \text { in 1952, } 1953 \text { and 1954). }
\end{aligned}
$$

For the formula for other ages see Report on English Life Table No. 10, Decennial Supplement of the Registrar-General (U.K.), 1931. Nore.-The above formulae do not include any adiustment for migration.

